首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111038篇
  免费   11793篇
  国内免费   10001篇
化学   42657篇
晶体学   822篇
力学   11427篇
综合类   1839篇
数学   36361篇
物理学   39726篇
  2023年   924篇
  2022年   1590篇
  2021年   2137篇
  2020年   2649篇
  2019年   2791篇
  2018年   2507篇
  2017年   3146篇
  2016年   3721篇
  2015年   3198篇
  2014年   4520篇
  2013年   8465篇
  2012年   5235篇
  2011年   5920篇
  2010年   5101篇
  2009年   6522篇
  2008年   6897篇
  2007年   7075篇
  2006年   6502篇
  2005年   5658篇
  2004年   5280篇
  2003年   4939篇
  2002年   4370篇
  2001年   3674篇
  2000年   3459篇
  1999年   3087篇
  1998年   2841篇
  1997年   2340篇
  1996年   2048篇
  1995年   2054篇
  1994年   1831篇
  1993年   1557篇
  1992年   1475篇
  1991年   1120篇
  1990年   970篇
  1989年   798篇
  1988年   752篇
  1987年   622篇
  1986年   540篇
  1985年   616篇
  1984年   613篇
  1983年   313篇
  1982年   471篇
  1981年   486篇
  1980年   366篇
  1979年   360篇
  1978年   269篇
  1977年   239篇
  1976年   183篇
  1974年   118篇
  1973年   136篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
A green and novel deep eutectic solvent modified graphene was prepared and used as a neutral adsorbent for the rapid determination of sulfamerazine in a river water sample by pipette‐tip solid‐phase extraction. Compared with conventional graphene, deep eutectic solvent modified graphene can change the surface of graphene with wrinkled structure and higher selective extraction ability. The properties of deep eutectic solvent modified graphene and graphene were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Static adsorption showed deep eutectic solvent modified graphene had a higher adsorption ability (18.62 mg/g) than graphene. Under the optimum conditions, factors such as kinds of washing solvents and elution solvents and volume of elution solvent were evaluated. The limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of sulfamerazine were in the range of 91.01–96.82% with associated intraday relative standard deviations ranging from 1.63 to 3.46% and interday relative standard deviations ranging from 0.68 to 3.84%. Deep eutectic solvent modified graphene showed satisfactory results (recovery was 95.38%) and potential for rapid purification of sulfamerazine in river water sample in combination with the pipette‐tip solid‐phase extraction method.  相似文献   
992.
Bioactive equivalent combinatorial components play a critical role in herbal medicines. However, how to discover and enrich them efficiently is a question for herbal pharmaceuticals researchers. In our work, a novel two‐dimensional reversed‐phase/hydrophilic interaction high‐performance liquid chromatography method was established to perform real‐time components trapping and combining for preparation and isolation of coeluting components. Arenaria kansuensis was taken as an example, and solid‐phase extraction coupled with liquid–liquid extraction as a simple and efficient method for enriching trace components, reversed phase column coupled with hydrophilic interaction liquid chromatography XAmide column as two‐dimensional chromatography technology for isolation and preparation of coeluting constituents, enzyme‐linked immune‐sorbent assay as bio‐guided assay, and anti‐inflammatory bioactivity evaluation for bioactive constituents. A combination of 12 β‐carboline alkaloids was identified as anti‐inflammatory bioactive equivalent combinatorial components from A. kansuensis , which accounts for 1.9% w/w of original A. kansuensis . This work answers the key question of which are real anti‐inflammatory components from A. kansuensis and provides a fast and efficient approach for discovering and enriching trace β‐carboline alkaloids from herbal medicines for the first time. More importantly, the discovery of bioactive equivalent combinatorial components could improve the quality control of herbal products and inspire a herbal medicine based on combinatorial therapeutics.  相似文献   
993.
The linear solvent strength model was used to predict coverage in online comprehensive two‐dimensional reversed‐phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners of the parallelogram are assumed to behave like chromatographic peaks and the position of these pseudo‐compounds was predicted. A mix of 25 polycyclic aromatic compounds were used as a test. The precision of the prediction, span 0–25, was tested by varying input parameters, and was found to be acceptable with root mean square errors of 3. The accuracy of the prediction was assessed by comparing with the experimental coverages. Less than half of experimental coverages were outside prediction ± 1 × root mean square error and none outside prediction ± 2 × root mean square error. Accuracy was lower when retention factors were low, or when gradient conditions affected parameters not included in the model, e.g. second dimension gradient time affects the second dimension equilibration time. The concept shows promise as a tool for gradient optimization in online comprehensive two‐dimensional liquid chromatography, as it mitigates the tedious registration and modeling of all sample constituents, a circumstance that is particularly appealing when dealing with complex samples.  相似文献   
994.
A novel design of hollow‐fiber liquid‐phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol–gel technique, was developed for the pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid‐ and liquid‐phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01–500 ng/mL and the limits of detection were in the range of 0.007–1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85–92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   
995.
We report the synthesis, characterization, and application of [Zn(1,4‐benzenedicarboxylate)(H2O)2]n , Zn(1,4‐benzenedicarboxylate)0.99(NH2‐1,4‐benzenedicarboxylate)0.01(H2O)2]n , [Zn(1,4‐benzenedicarboxylate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n as sorbents for the extraction of multiclass pesticides from coconut palm. Liquid chromatography with ultraviolet diode array detection was used as the analysis technique, and the experiments were performed at one fortification level (0.1 μg/g). The recoveries were 47–67, 51–70, 58–72, and 64–76% for [Zn(1,4‐benzenedicarboxylate)(H2O)2]n , Zn(1,4‐benzenedicarboxylate)0.99(NH2‐1,4‐benzenedicarboxylate)0.01(H2O)2]n , [Zn(1,4‐benzenedicarboxylate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenelate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n , respectively, with relative standard deviation ranging from 1 to 7% (n = 3). Detection and quantification limits were 0.01–0.05 and 0.05–0.2 μg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.01–10.0 μg/g) with r 2 > 0.9991. A direct comparison of [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n with the commercially available neutral alumina showed that [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n was a similar extracting phase for the pesticides investigated.  相似文献   
996.
Methyltriphenylphosphonium bromide/chalcone/formic acid, a green ternary deep eutectic solvent, was applied as a functional monomer and dummy template simultaneously in the synthesis of a new molecularly imprinted polymer. Ternary deep eutectic solvent based molecularly imprinted polymers are used as a solid‐phase extraction sorbent in the separation and purification of rutin and quercetin from Herba Artemisiae Scopariae combined with high‐performance liquid chromatography. Fourier transform infrared spectroscopy and field‐emission scanning electron microscopy were applied to characterize the deep eutectic solvent based molecularly imprinted polymers synthesized using different molar ratios of chalcone. The static and competitive adsorption tests were performed to examine the recognition ability of the molecularly imprinted polymers to rutin and quercetin. The ternary deep eutectic solvent consisting of formic acid/chalcone/methyltriphenylphosphonium bromide (1:0.05:0.5) had the best molecular recognition effect. After optimization of the washing solvents (methanol/water, 1:9) and eluting solvents (acetonitrile/acetic acid, 9:1), a reliable analytical method was developed for strong recognition towards rutin and quercetin in Herba Artemisiae Scopariae with satisfactory extraction recoveries (rutin: 92.48%, quercetin: 94.23%). Overall, the chalcone ternary deep eutectic solvent‐based molecularly imprinted polymer coupled with solid‐phase extraction is an effective method for the selective purification of multiple bioactive compounds in complex samples.  相似文献   
997.
Magnetic graphene oxide was modified by four imidazole‐based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid‐phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field‐emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single‐factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid–liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid‐modified magnetic graphene oxide materials, and amount of 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic‐liquid‐modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties.  相似文献   
998.
A novel hollow‐fiber liquid‐phase microextraction based on oil‐in‐salt was proposed and introduced for the simultaneous extraction and enrichment of the main active compounds of hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin in a formula of Zi‐Cao‐Cheng‐Qi decoction and the single herb, Fructus Aurantii Immaturus , Cortex Magnoliae Officinalis , Radix et Rhizoma , and Lithospermum erythrorhizon , composing the formula prior to their analysis by high‐performance liquid chromatography. The results obtained by the proposed procedure were compared with those obtained by conventional hollow‐fiber liquid‐phase microextraction, and the proposed procedure mechanism was described. In the procedure, a hollow‐fiber segment was first immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was again immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Under the optimum conditions, the enrichment factors of the analytes were 0.6–109.4, linearities were 0.002–12 μg/mL with r 2 ≥ 0.9950, detection limits were 0.6–12 ng/mL, respectively. The results showed that oil‐in‐salt hollow‐fiber liquid‐phase microextraction is a simple and effective sample pretreatment procedure and suitable for the simultaneous extraction and concentration of trace‐level active compounds in traditional Chinese medicine.  相似文献   
999.
A high‐throughput miniaturized liquid–liquid extraction procedure followed by a simple ultra‐high performance liquid chromatography method coupled with fluorescence detection for bioanalytical analysis of all tocopherol isomers and retinol in human serum has been developed and validated. In the extraction procedure, a synthetic internal standard tocol was used, which does not occur in the human body. The separation of structurally related vitamins was achieved using a new generation of pentafluorophenyl propyl core–shell stationary phase with elution using methanol and an aqueous solution of ammonium acetate. The fluorescence of retinol and tocopherol isomers was detected at λex = 325, 295 nm and λem = 480, 325 nm, respectively. The rapid baseline separation of all analytes was accomplished within 4.0 min. The sensitivity of method was demonstrated with lower limits of quantification: retinol 0.01 μM, α‐tocopherol 0.38 μM, β‐tocopherol 0.18 μM, γ‐tocopherol 0.14 μM, and δ‐tocopherol 0.01 μM. Possible application of this method in clinical practice was confirmed by the analysis of human serum samples from healthy volunteers. Finally, the simultaneous determination of retinol and all tocopherol isomers in human serum can enable the clarification of their role in metabolism and in diseases such as cancer.  相似文献   
1000.
Herein, an amino‐based silica‐coated nanomagnetic sorbent was applied for the effective extraction of two chlorophenoxyacetic acids (2‐methyl‐4‐chlorophenoxyacetic acid and 2,4‐dichlorophenoxyacetic acid) from various water samples. The sorbent was successfully synthesized and subsequently characterized by scanning electron microscopy, X‐ray diffraction, and Fourier‐transform infrared spectroscopy. The analytes were extracted by the sorbent mainly through ionic interactions. Once the extraction of analytes was completed, they were desorbed from the sorbent and detected by high‐performance liquid chromatography with ultraviolet detection. A number of factors affecting the extraction and desorption of the analytes were investigated in detail and the optimum conditions were established. Under the optimum conditions, the calibration curves were linear over the concentration range of 1–250, and based on a signal‐to‐noise ratio of 3, the method detection limits were determined to be 0.5 μg/L for both analytes. Additionally, a preconcentration factor of 314 was achieved for the analytes. The average relative recoveries obtained from the fortified water samples varied in the range of 91–108% with relative standard deviations of 2.9–8.3%. Finally, the method was determined to be robust and effective for environmental water analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号